Semiconductor Nano-Pores Tunability for DNA Sequencing*

Jean-Pierre Leburton,

Department of Electrical and Computer Engineering and Beckman Institute

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

*Work done in collaboration with M. Gracheva, A. Aksimentiev and G. Timp and supported by NIRT-NSF and NIH

A Challenge:

Electronic Detection of DNA Molecular Sequences

Merging Biology and Nano-Electronics: An Integrated Approach.

DNA Translocations through a Nanopore

(measurements using a 1nm diameter nanopore like a molecular Coulter counter)

Sorting DNA polymers

Molecular Dynamics of DNA in a Nanopore (force fields: CHARM27: DNA, Si₃N₄, TIP3 H₂O, ions; AMBER95: DNA)

1 DNA molecule

nanopore+DNA

K. Schulten and A. Aksimentiev

 nanopore+DNA+ water

 nanopore+DNA+ water+ions

Molecular Dynamics of DNA in a Si₃N₄ Nanopore

- % blocking current correlated with molecular velocity
- (• large fields cause the DNA to denature)

A. Aksimentiev

The Electronic Device Aspect

Gracheva et al. Nanotechnology 17(3), 622-633 (2006)

Nanopore-Membrane Electrostatic

Modeling

Poisson Equation:

$$\vec{\nabla} \cdot (\varepsilon(\vec{r})\vec{\nabla}\phi(\vec{r})) = -\rho(\vec{r})$$

Charge density:

$$\rho_{solid-state}(\vec{r}) = q\{N_d^+(\vec{r}) - N_a^-(\vec{r}) + p(\vec{r}) - n(\vec{r})\}$$

$$\rho_{solution}(\vec{r}) = q\{[K^+](\vec{r}) - [Cl^-](\vec{r})\} + \rho_{DNA}(\vec{r})$$

$$n(\vec{r}) = N_c \frac{2}{\sqrt{\pi}} F_{1/2}(\eta_c(\vec{r})) \qquad \eta_c(\vec{r}) = \frac{E_f - E_c(\vec{r})}{kT}$$
$$p(\vec{r}) = N_v \frac{2}{\sqrt{\pi}} F_{1/2}(\eta_v(\vec{r})) \qquad \eta_v(\vec{r}) = \frac{E_v(\vec{r}) - E_f}{kT}$$

 $[K^{+}](\vec{r}) = [K^{+}]_{0} \exp(q\phi(\vec{r})/kT)$ $[Cl^{-}](\vec{r}) = [Cl^{-}]_{0} \exp(-q\phi(\vec{r})/kT)$ $[K^{+}]_{0} = [Cl^{-}]_{0} = c$

 $E_{c}(\vec{r}) = -q\phi(\vec{r}) - E_{g}$ $E_{v}(\vec{r}) = -q\phi(\vec{r})$

Gracheva et al., Nanotechnology 17, 622-633 (2006)

Empty pore negative (left) and positive (right) charge in the structure and solution

Multi-Scale "Self-consistent" Poisson Solver

(used in conjunction with "snapshots" provided by MD)

Simulation of ssDNA Translocation Through a 2.5nm Nanopore

Simulation of unstretched ssDNA Translocation Through a 2.5 nm Nanopore

Decoding DNA sequence and configuration

Simulation of Stretched ssDNA Translocation Through a 1.0nm Nanopore

11 bases

2.5nm pore 1.0nm Gracheva

Gracheva et al Nanotechnology 17(13), p.3160 (2006)

Upper electrode voltage for C3AC7 and its backbone

The whole DNA translocation and translocation of the eleven fragments

The whole DNA translocation with one base mutation

 Mutated
 Dase #4

 In the same
 In the same

 conformation!!!
 Same

The whole DNA translocation with one base mutation

 Mutated
 Dase #4

 In the same
 In the same

 conformation!!!
 Same

Semiconductor Membrane: Double Layer Engineering

SiO₂: dielectric material no carriers of either sign

n+-Si: heavily doped Si semiconductor material Fixed positive charge $N_d^+=2x10^{20}$ cm⁻³, electrons, some holes

Surface charge: $\sigma_1=0$ $\sigma_2=-0.0064 \text{ Cm}^{-2}$ $\sigma_3=-0.019 \text{ Cm}^{-2}$ $\sigma_4=-0.032 \text{ Cm}^{-2}$

[KCI]=1M

Gracheva & Leburton Nanotechnology 18, p.145704 (2007)

[KCI]=0.1M

Controlled Ionic Conductance & Filtering (Linear Response)

Vidal, Gracheva & Leburton, Nanoscale Res. Lett. 2, p. 61 (2007)

[KCI]=0.1M

Toward Ionic Rectification: Static Dipolar Surface Charges

P-N Semiconductor Membrane

Gracheva et al., Nano Letters 7, 1717-1722 (2007)

Ionic Transport Model

n-Si

 \mathbf{L}

Δφτ

p-Si

 $\Delta \phi_{\rm D}({\rm V})$

R

V/2

 $\Delta \phi_{\rm R}$

Total ionic current:

$$I = \pi r^2 \sum_i z_i J_i$$

Ionic fluxes*:

Constant field approximation on segment $(d_1; d_2)$:

 $c_i(d_1) = c_{i,L} \exp(-z_i F \Delta \phi_L / RT) \qquad V = -(\Delta \phi_L(V) + \Delta \phi_D(V) + \Delta \phi_R(V))$ $\Delta \phi_D(V) = \Delta \phi_D(V=0) - V$ ←assume $c_i(d_2) = c_{iR} \exp(-z_i F \Delta \phi_R / RT)$

*After Ramírez et al., Phys. Rev. E 68, 011910(1)-011910(8) (2003)

Tunable Rectification and Ion Filtering

Rectification

Ion selectivity

Future: fast DNA sequencing?

- Nano-bio-electronic scheme for DNA sequencing
- Integrated multi-scale MD-Self consistent Poisson approach.
- Individual bases electrically detectable, BUT noise and conformation analysis!!!
- Electrical tunability of semiconductor membranes for double layer control.
- PN membranes for tunable rectification and ionic filtering.

